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Abstract. We consider optimization methods for convex minimization
problems under inexact information on the objective function. We intro-
duce inexact model of the objective, which as a particular cases includes
inexact oracle [16] and relative smoothness condition [36]. We analyze
gradient method which uses this inexact model and obtain convergence
rates for convex and strongly convex problems. To show potential appli-
cations of our general framework we consider three particular problems.
The first one is clustering by electorial model introduced in [41]. The
second one is approximating optimal transport distance, for which we
propose a Proximal Sinkhorn algorithm. The third one is devoted to
approximating optimal transport barycenter and we propose a Proximal
Iterative Bregman Projections algorithm. We also illustrate the practical
performance of our algorithms by numerical experiments.

Keywords: Gradient method · Inexact oracle · Strong convexity ·
Relative smoothness · Bregman divergence

1 Introduction

In this paper we consider optimization methods for convex problems under inex-
act information on the objective function. This information is given by an object,
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which we call inexact model. Inexact model generalizes the inexact oracle intro-
duced in [16], where inexactness is assumed to be present in the objective value
and its gradient. The authors show that, based on these two objects, it is possi-
ble to construct a linear function, which is a lower approximation and, up to a
quadratic term, an upper approximation of the objective, and these two approx-
imations are enough to obtain convergence rates for gradient method and accel-
erated gradient method. We go beyond and assume that the approximations of
the objective are given through some function, which is not necessarily linear.

This allows us to construct general gradient-type method which is applicable
in for different problem classes and allows to obtain convergence rates in these
situations as a corollary of our general theorem. Besides convex problems we
focus also on strongly convex objectives and illustrate the application of our
general theory by two examples. The first example is data clustering by electoral
model [41]. The second example relates to Wasserstein distance and barycenter,
which are widely used in data analysis [12,13].

Many optimization methods use some model of the objective function to
define a step by minimization of this model. Usually the model is constructed
using exact first-order [18,39,43], second-order [42], or higher-order information
[9,40] information on the objective. The influence of inexactness on the conver-
gence of gradient-type methods have being studied at least since [46]. Accelerated
first-order methods with inexact oracle are studied in [11,14,16,21,37]. Some
recent works study also non-convex problems in this context [8,19]. Randomized
methods with inexact oracle are also studied in the literature, e.g. coordinate
descent in [27,53], random gradient-free methods and random directional deriva-
tive methods in [22,23]. A method with inexact oracle for variational inequalities
can be found in [26].

The contributions of this paper can be summarized as follows.

� We introduce an inexact model of the objective function for convex opti-
mization problems and strongly convex optimization problems.
� We introduce and theoretically analyze a gradient-type method for convex
and strongly convex problems with an inexact model of the objective function.
For the latter case we prove linear rate of convergence.
� We apply our method to, generally speaking, non-convex optimization
problem which arises in clustering model introduced in [41]. To do this we
construct an inexact model and apply our general algorithms and convergence
theorems.
� We apply our general framework for Wasserstein distance and barycenter
problems and show that it allows to construct a proximal á la [10] version of
the Sinkhorn’s algorithm [49] and Iterative Bregman Projection algorithm [5].

Notation. We define 1 = (1, ..., 1)T ∈ R
n, KL(z|t) to be the Kullback-Leibler

divergence: KL(z|t) =
n∑

k=1

zk ln(zk/tk), ∀z, t ∈ Sn(1), where Sn(1) is the stan-

dard simplex in R
n. We also denote by � the entrywise product of two matrices.
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2 Gradient Methods with Inexact Model of the Objective

Consider the convex optimization problem

f(x) → min
x∈Q

, (1)

where function f is convex and Q ⊆ R
n is a simple convex compact set. Moreover,

assume that minx∈Q f(x) = f(x∗) for some x∗ ∈ Q.
To solve this problem, we introduce a norm ‖ · ‖ on R

n and a prox-function
d(x) which is continuous and convex. We underline that, unlike most of the
literature, we do not require d to be strongly convex.

Without loss of generality, we assume that min
x∈Rn

d(x) = 0. Further, we define

Bregman divergence V [y](x) := d(x) − d(y) − 〈∇d(y), x − y〉. Next we define the
inexact model of the objective function, which generalizes the inexact oracle of
[16] (see also [8,21,24,29,52,54]).

Definition 1. Let function ψδ(x, y) be convex in x ∈ Q and satisfy ψδ(x, x) = 0
for all x ∈ Q.

(i) We say that ψδ(x, y) is a (δ, L)-model of the function f at a given point y
with respect to V [y](x) iff, for all x ∈ Q, the inequality

0 ≤ f(x) − (f(y) + ψδ(x, y)) ≤ LV [y](x) + δ

holds for some L, δ > 0.
(ii) We say that ψδ(x, y) is a (δ, L, μ)-model of the function f at a given point

y with respect to V [y](x) iff, for all x ∈ Q, the inequality

μV [y](x) ≤ f(x) − (f(y) + ψδ(x, y)) ≤ LV [y](x) + δ (2)

Note that we allow L to depend on δ. We refer to the case (i) as convex case
and to the case (ii) as strongly convex case.

Remark 1. In the particular case of function f possessing (δ, L)-oracle [16] at a
given point y, one has

0 ≤ f(x) − f(y) − 〈gδ(y), x − y〉 ≤ L

2
‖x − y‖2 + δ

and ψδ(x, y) = 〈gδ(y), x − y〉. In the same way, if function f is equipped with
(δ, L, μ)-oracle [17], i.e.,

μ

2
‖x − y‖2 ≤ f(x) − f(y) − 〈gδ,L,μ(y), x − y〉 ≤ L

2
‖x − y‖2 + δ ∀x ∈ Q,

we have ψδ(x, y) = 〈gδ,L,μ(y), x − y〉.
The algorithms we develop are based on solving auxiliary simple problems

on each iteration. We assume that these problems can be solved inexactly and,
following [4] introduce a definition of inexact solution of a problem.
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Definition 2. Consider a convex minimization problem

φ(x) → min
x∈Q⊆Rn

. (3)

If φ is smooth, we say that we solve it with δ̃-‘precision’ (δ̃ ≥ 0) if we find x̃

s.t. maxx∈Q〈∇φ(x̃), x̃ − x〉 = δ̃. If φ is general convex, we say that we solve this
problem with δ̃-‘precision’ if we find x̃ s.t. ∃h ∈ ∂φ(x̃), 〈h, x∗ − x̃〉 ≥ −δ̃. In both
cases we denote this x̃ as argmin˜δ

x∈Q φ(x).

We notice that the case δ̃ = 0 corresponds to the case when x̃ is an exact solution
of convex optimization problem (3) [4,39].

The connection of Definition 2 with standard definitions of inexact solution,
e.g. in terms of the objective residual, can be found in Appendix G of the full
version of the paper [51].

2.1 Convex Case

In this subsection we describe a gradient-type method for problems with (δ, L)-
model of the objective. This algorithm is a natural extension of gradient method,
see [29,52,54].

Algorithm 1. Gradient method with (δ, L)-model of the objective.

1: Input: x0 is the starting point, L > 0 and δ, ˜δ > 0.
2: for k ≥ 0 do
3:

φk+1(x) := ψδ(x, xk) + LV [xk](x), xk+1 := arg min
x∈Q

˜δφk+1(x).

4: end for
Output: x̄N = 1

N

∑N−1
k=0 xk+1

Theorem 1. Let V [x0](x∗) ≤ R2, where x0 is the starting point, and x∗ is
the nearest minimum point to the point x0 in the sense of Bregman divergence
V [y](x). Then, for the sequence, generated by Algorithm 1 the following inequality
holds:

f(x̄N ) − f(x∗) ≤ LR2

N
+ δ̃ + δ,

In Appendix A of the full version of the paper [51] we prove this theorem and
provide an adaptive version of Algorithm 1, which does not require knowledge
of the constant L.
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2.2 Strongly Convex Case

In this subsection we consider problem (1) with (δ, L, μ)-model of the objective
function satisfying (2). This more strong assumption allows us to obtain linear
rate of convergence of the proposed algorithm. Our algorithm is listed as Algo-
rithm 2 and it is a version of Algorithm 1, which is adaptive to possibly unknown
constant L.

Algorithm 2. Adaptive gradient method with an oracle using the (δ, L, μ)-model
1: Input: x0 is the starting point, μ > 0 L0 ≥ 2μ and δ.
2: Set S0 := 0
3: for k ≥ 0 do
4: Find the smallest ik ≥ 0 such that

f(xk+1) ≤ f(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ,

where Lk+1 = 2ik−1Lk for Lk ≥ 2μ and Lk+1 = 2ikLk for Lk < 2μ,
αk+1 := 1

Lk+1
, Sk+1 := Sk + αk+1.

φk+1(x) := ψδ(x, xk) + Lk+1V [xk](x), xk+1 := arg min
x∈Q

˜δφk+1(x).

5: end for
Output: x̄N = 1

SN

∑N−1
k=0

xk+1
Lk+1

Let’s introduce average parameter L̂:

1 − μ

L̂
= k+1

√(

1 − μ

Lk+1

) (

1 − μ

Lk

)

. . .

(

1 − μ

L1

)

.

Note that by Li ≥ μ (i = 1, 2, . . .)

min
1≤i≤k+1

Li ≤ L̂ ≤ max
1≤i≤k+1

Li ≤ 2L.

The following result holds.

Theorem 2. Let ψδ(x, y) is a (δ, L, μ)-model for f w.r.t. V [y](x). Then, after
k iterations of Algorithm 2, we have

V [xk+1](x∗) ≤ 2L(δ + δ̃)
μ2

(

1 −
(
1 − μ

2L

)k+1
)

+
(

1 − μ

L̂

)k+1

V [x0](x∗),

f(xk+1)−f(x∗) ≤ 4L2(δ + δ̃)
μ2

(

1 −
(
1 − μ

2L

)k+1
)

+2L

(

1 − μ

L̂

)k+1

V [x0](x∗).

The details of proof can be found in Appendix B of the full version of the
paper [51]. Note that Algorithm 1 also has linear convergence rate for the strongly
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convex case. The details can be found in Appendix C of the full version of the
paper [51]. The benefit of Algorithm 1 is that there is no need to know the
strong convexity parameter μ for the algorithm to work. On the other hand,
this parameter is needed for assessing the quality of the solution returned by
the algorithm. The benefit of the adaptive version is that it does not require to
know the value of the parameter L and adapts to it. Moreover, the parameter L
can be different for the model at different points and the algorithm adapts also
for the local value of this parameter.

3 Clustering by Electorial Model

In this section we consider clustering model introduced in [41]. In this model
voters (data points) choose a party (cluster) in an iterative manner by alternative
minimization of the following function.

fμ1,μ2(x = (z, p)) = g(x) + μ1

n∑

k=1

zk ln zk +
μ2

2
‖p‖22 → min

z∈Sn(1),p∈R
m
+

, (4)

where R
m
+ is a non-negative orthant and Sn(1) is the standard n-dimensional

simplex in R
n.

The vector z contains probabilities with which voters choose the considered
party, and vector p describes the position of the party in the space of voter
opinions. The minimized potential is the result of combining two optimization
problems into one: voters choose the party whose position is closest to their
personal opinion and the party adjusts its position minimizing dispersion and
trying not to go too far from its initial position. Yu. Nesterov in [41] used sequen-
tial elections process to show that under some natural assumptions the process
convergence and gives the clustering of the data-points. This was done for a par-
ticular choice of the function g which has limited interpretability. We show, how
our framework of inexact model of the objective allows to construct a gradient-
type method for the case of general function g, which is not necessarily convex.

Assume that g(x) (generally, non-convex) is a function with Lg-Lipschitz
continuous gradient:

‖∇g(x) − ∇g(y)‖∗ ≤ Lg‖x − y‖ ∀x, y ∈ Sn(1) × R
m
+ ,

and, following [41], the numbers μ1, μ2 are chosen such that Lg ≤ μ1 and
Lg ≤ μ2.

The norm ‖ · ‖ in Sn(1) × R
m
+ is defined as ‖(z, p)‖2 = ‖z‖21 + ‖p‖22, where

‖z‖1 =
n∑

k=1

zk and ‖p‖2 =

√
m∑

k=1

p2k. The correctness of this definition is proven

in Appendix I of the full version of the paper [51].
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It can be shown that

ψδ(x, y) = 〈∇g(y), x − y〉 − Lg · KL(zx|zy) − Lg

2
‖px − py‖22

+μ1(KL(zx|1) − KL(zy|1)) +
μ2

2
(‖px‖22 − ‖py‖22

)

is a (0, 2Lg)-model of fμ1,μ2(x) in x with respect to the following Bregman
divergence

V [y](x) = KL(zx|zy) +
1
2
‖px − py‖22.

The proof is detailed in Appendix I of the full version of the paper [51].
Further, for the case min{μ1, μ2} > Lg ψδ(x, y) is a strongly convex w.r.t.

V [y](x):

ψδ(x, y) = ψlin
δ (x, y) + (μ1 − Lg) · KL(zx|zy) +

μ2 − Lg

2
‖px − py‖22 (5)

≥ (min{μ1, μ2} − Lg) · V [y](x),

where

ψlin
δ (x, y) = 〈∇g(y), x − y〉 + μ1〈∇KL(zy|1), zx − zy〉 + μ2〈py, px − py〉

is linear in y. The proof of (5) is given in Appendix I of the full version of the
paper [51].

Thus, ψlin
δ (x, y) is a (0,max{μ1, μ2} + Lg,min{μ1, μ2} − Lg)-model of the

function fμ1,μ2 :

fμ1,μ2(y) + ψlin
δ (x, y) + (min{μ1, μ2} − Lg)V [y](x) ≤ fμ1,μ2(x)

and

fμ1,μ2(x) ≤ fμ1,μ2(y) + ψlin
δ (x, y) + (max{μ1, μ2} + Lg)V [y](x).

So, we can apply our Algorithms 1 and 2 to the problem (4).

4 Proximal Sinkhorn Algorithm for Optimal Transport

In this section we consider the problem of approximating an optimal transport
(OT) distance. Recently optimal transport distances has gained a lot of interest
in machine learning and statistical applications [3,6,15,28,34,45,50]. To state
the OT problem, assume that we are given two discrete probability measures
p, q ∈ Sn(1) and ground cost matrix C ∈ R

n×n
+ , then the optimal transport

problem is

〈C, π〉 → min
π∈U(p,q)

, U(p, q) = {π ∈ R
n×n
+ : π1 = p, πT1 = q} (6)
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where 〈·, ·〉 denotes Frobenius dot product of matrices, π is a transportation
plan.

The above optimal transport problem is the Kantorovich [31] linear program
(LP) formulation of the problem, which goes back to the Monge’s problem [38].

The best known theoretical complexity for this linear program is1 Õ(n2.5),
see [35]. However, there is no known practical implementation of this algorithm.
In practice, the simplex method gives complexity O(n3 ln n) [44]. We follow the
alternative approach based on entropic regularization of the OT problem [12].
We show how our general framework of inexact model of the objective allows to
construct Proximal Sinkhorn algorithm with better computational stability in
comparison with the standard Sinkhorn algorithm.

For any optimization problem (1), ψδ(x, y) = f(x)−f(y) satisfies Definition 1
with any L ≥ 0. In this case, our Algorithm 1 becomes inexact Bregman proximal
gradient method

xk+1 = arg min
x∈Q

δ̃ {f(x) + LV [xk](x)} .

Our idea is to apply this proximal method for the OT problem and approx-
imately find the next iterate xk+1 by Sinkhorn’s algorithm [2,12,25,49]. The
latter is made possible by the choice of V as KL divergence, which makes the
problem of finding the point xk+1 to be an entropy-regularized OT problem,
which, in turn, is efficiently solvable by the Sinkhorn algorithm.

Consider the iterates

π0 = pqT ∈ U(p, q), πk+1 = arg min
π∈U(p,q)

ε/2
{〈C, π〉 + L · KL(π|πk)

}

= arg min
π∈U(p,q)

ε/2KL

(

π

∣
∣
∣
∣π

k � exp
(

−C

L

))

, (7)

which we call outer iterations. On each outer iteration we use Sinkhorn’s algo-
rithm 3, which solves the minimization problem in (7) with accuracy ε̃ in terms
of its objective residual. Notice that here ε′ differs from the one from [2,25]
as we need approximated solution to the regularized problem. Moreover, unlike
[25] we use a slightly refined theoretical bounds for the Sinkhorn’s algorithm not
depending on vectors p, q2.

Theorem 3. Let π̄N = 1
N

∑N
k=1 πk, where πk are the iterates of (7). Then,

after N = 4L lnn
ε iterations, it holds that 〈C, π̄N 〉 ≤ minπ∈U(p,q)〈C, π〉+ ε. More-

over, the accuracy ε̃ for the solution of (7) is sufficient to be set as Õ(ε4/(Ln4))
and the complexity of Sinkhorn’s Algorithm on k-th iteration is bounded as

n2Õ

(

min

{

exp
( c̄k

L

)( c̄k

L
+ ln

c̄k

ε̃

)
,

c̄2k
Lε̃

})

, (8)

1 Here and below for all (large) n: ˜O(g(n)) ≤ C̃ · (ln n)rg(n) with some constants
C̃ > 0 and r ≥ 0. Typically, r = 1, but not in this particular case. If r = 0, then
˜O(·) = O(·).

2 One can find the proof in Appendix E of the full version of the paper [51].
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Algorithm 3. Sinkhorn’s Algorithm
Input: Accuracy ε̃, matrix K = e−C/γ , marginals p, q ∈ Sn(1).

1: Set t = 0, u0 = ln p, v0 = ln q, ε′ = ε̃
4

(

maxi,j Cij − mini,j Cij + 2γ ln
(

4γn2

ε̃

))−1

.

2: repeat
3: if t mod 2 = 0 then
4: ut+1 = ut + ln p − ln(B(ut, vt)1), where B(u, v) := diag(eu)K diag(ev)
5: vt+1 = vt

6: else
7: vt+1 = vt + ln q − ln(B(ut, vt)T1)
8: ut+1 = ut

9: end if
10: t = t + 1
11: until

∥

∥B(ut, vt)1 − p
∥

∥

1
+

∥

∥B(ut, vt)T1 − q
∥

∥

1
≤ ε′

12: Find π̂ as the projection of B(ut, vt) on U(p, q) by Algorithm 2 in [2].
Output: π̂.

where3

c̄k = ‖C‖∞ + L ln

(
maxi,j πk

ij

mini,j πk
ij

)

.

Fig. 1. Adaptive choice of L

Remark 2. The standard Sinkhorn’s method
can be seen as a particular case of our algo-
rithm (7) with only one step. To obtain
an ε-approximate solution of (6), the regu-
larization parameter L needs to be chosen
O (ε/ ln n) [2,25,30]. This can lead to insta-
bility of the Sinkhorn’s algorithm [48]. On
the opposite, our Proximal Sinkhorn algo-
rithm allows to run Sinkhorn’s algorithm
with larger regularization parameter. This
parameter can be chosen by minimization of the theoretical bound (8), which
gives L = Õ(‖C‖∞). In practice one can choose this constant adaptively since we
have a (δ, L)-model for any L and can vary L from iteration to iteration. First,
the inner problem (7) is solved with overestimated L. Then, we set L := L/2
and the problem is solved with the updated value of the parameter and so on
until a significant increase (e.g. 10 times) in the complexity of the auxiliary
entropy-linear programming problem in comparison with the initial complexity

3 This bound is rough and typically c̄k is smaller in practice. By proper rounding of
πk one can guarantee (without loss of generality) that πk

ij ≥ ε/(2n2 ‖C‖∞), which
gives

c̄k

L
=

‖C‖∞
L

+ ln

(

2n2 ‖C‖∞
ε

)

.

But, in practice there often is no need to make ‘rounding’ after each outer iteration.
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is detected, see Fig. 1, where N(L) is a number of required iterations of Sinkhorn
algorithm to solve the inner problem with accuracy ε.

From the Theorem 3 and Remark 2 one can roughly estimate the total com-
plexity of Proximal Sinkhorn algorithm as4 Õ(n4/ε2).

We also mention several recent complexity bounds5 for the OT problem
Õ(n2/ε3) [2], Õ(n2/ε2) and Õ(n2.5/ε) [25], Õ(n2/ε) [7,47], Õ(n/ε3+d), d ≥ 1 [1].

4.1 Numerical Illustration

In this subsection we provide numerical illustration of the Proximal Sinkhorn
algorithm.6 In the experiments we use a standard MNIST dataset with images
scaled to a size 10 × 10. The vectors p and q contain the pixel intensities of the
first and second images respectively. The value of cij is equal to the Euclidean
distance between the i-th pixel from the vector p and the j-th pixel from the
vector q on the image pixel grid. For experiments with varying number of pixels
n the images are resized to be images of 10 ·m× 10 ·m pixels, where m ∈ N. We
replace all the zero elements in p and q with 10−3 and, then, normalize these
vectors.

Fig. 2. Comparison of iteration number of Sinkhorn’s algorithm and total number of
Sinkhorn steps in Proximal Sinkhorn’s algorithm for different L.

Figure 2 shows that the growth rate of the iteration number with increasing
accuracy or size of the problem for the Sinkhorn’s algorithm is greater than for
4 Our experiments on MNIST data set show (see Figs. 2, 3) that in practice the bound

is better.
5 Strictly speaking for the moment we can not verify all the details of the proof of

estimate Õ(n2/ε). Also the proposed in [7,47] methods are mainly theoretical, like
Lee–Sidford’s method for OT problem with the complexity Õ(n2.5) [35]. For the
moment it is hardly possible to implement these methods such that theirs practical
efficiencies correspond to the theoretical ones.

6 The code is available at https://github.com/dmivilensky/Proximal-Sinkhorn-
algorithm.

https://github.com/dmivilensky/Proximal-Sinkhorn-algorithm
https://github.com/dmivilensky/Proximal-Sinkhorn-algorithm
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Fig. 3. Comparison of working time of Sinkhorn’s algorithm and Proximal Sinkhorn’s
algorithm with different L.

the Proximal Sinkhorn’s method. At the same time, with a higher value of L
in proximal method, the iteration number is greater, and the growth rates with
some precision are equal. The same type of dependence on the accuracy and the
size of the problem can be seen for the working time (Fig. 3).

More experiments can be found in the full version of this paper [51], in
particular, on the mean number of inner iterations7.

5 Proximal IBP Algorithm for Wasserstein Barycenter

In this section we consider a more complicated problem of approximating an
OT barycenter. OT barycenter is a natural definition of a mean in a space
endowed with an OT distance. Such barycenters are used in the analysis of data
with geometric structure, e.g. images, and other machine learning applications
[5,13,32,33,45].

For a set of probability measures {p1, . . . , pm}, cost matrices C1, . . . , Cm ∈
R

n×n
+ , and w ∈ Sn(1), the weighted barycenter of these measures is defined as a

solution of the following convex optimization problem

m∑

l=1

wl min
πl∈U(pl,q)

〈Cl, πl〉 → min
q∈Sn(1)

⇐⇒
m∑

l=1

wl〈Cl, πl〉 → min
π∈C1∩C2

,

C1 = {π = [π1, . . . , πm] : ∀l πl1 = pl} , C2 =
{

π = [π1, . . . , πm] : πT
1 1 = · · · = πT

m1
}

.

The idea is similar to the one in Sect. 4, namely, we use our framework to
define a Proximal Iterative Bregman Projections algorithm.

7 Figures 5–8 are given in the more complete version of the text by link https://arxiv.
org/abs/1902.09001

https://arxiv.org/abs/1902.09001
https://arxiv.org/abs/1902.09001
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The algorithm starts from the point π s.t. π0
l = 1

npl1
T ∈ U(pl,1/n), l =

1, ...,m and iterates

πk+1 = arg min
π∈C1∩C2

ε/2
m∑

l=1

wl

{〈Cl, πl〉 + L · KL(πl|πk
l )

}

= arg min
π∈C1∩C2

ε/2
m∑

l=1

wlKL

(

πl

∣
∣
∣
∣π

k
l � exp

(

−Cl

L

))

. (9)

These iterations are called outer iterations and on each such iteration, the Iter-
ative Bregman Projections algorithm [5] listed as Algorithm 4 below is used to
solve the auxiliary minimization problem.

Algorithm 4. Iterative Bregman Projection
Input: C1, . . . , Cm, p1, . . . , pm, L > 0, ε̃ > 0

1: u0
l := 0, v0

l := 0, Kl := exp
(

−Cl
L

)

, l = 1, . . . , m

2: repeat

3: vt+1
l :=

∑m
k=1 wk ln KT

k eut
k − ln KT

l eut
l , ut+1 := ut

4: t := t + 1
5: ut+1

l := ln pl − ln Kle
vt
l , vt+1 := vt

6: t := t + 1
7: until

∑m
l=1 wl

∥

∥BT
l (ut

l , v
t
l )1 − q̄t

∥

∥

1
≤ ε̃

4maxl‖Cl‖∞
, where Bl(ul, vl) =

diag (eul) Kl diag (evl), q̄t :=
∑m

l=1 wlB
T
l (ut

l , v
t
l )1

8: q := 1
∑m

l=1 wl〈1 ,Bl1〉
∑m

l=1 wlB
T
l 1

9: Calculate π̂1, . . . , π̂m by Algorithm 2 from [2] s.t.
π̂l ∈ U(pl, q), ‖π̂l − Bl‖1 ≤ ‖Bl1 − pl‖1 +

∥

∥BT
l 1 − q

∥

∥

1
.

Output: q, π̂ = [π̂1, . . . , π̂m].

Theorem 4. Let π̄N = 1
N

∑N
k=1 πk, where πk are the iterates of (9). Then,

after N = 4Lm lnn
ε iterations, it holds that

m∑

l=1

wl〈Cl, π̄
N
l 〉 ≤ min

π∈C1∩C2

m∑

l=1

wl〈Cl, πl〉 + ε.

Moreover, the accuracy ε̃ for the solution of (9) is sufficient to be set as ε̃ =
Õ(ε2/(mn3)) and the complexity of IBP on k-th iteration is bounded as

mn2Õ

(

min

{

exp
( c̄k

L

)
ln

c̄k

ε̃
,

c̄2k
Lε̃

})

,

c̄k = O

(

max
l=1,...,m

[

‖Cl‖∞ + L ln
(

maxi,j [πk
l ]ij

mini,j [πk
l ]ij

)])

.

The proof of Theorem 4 is based on Theorem 1 and [32]. All the remarks from
Sect. 4 for Proximal Sinkhorn algorithm also hold for Proximal IBP.
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In [32] it was shown that complexity of IBP is Õ
(
n2/ε2

)
. Despite the theo-

retical complexity of Proximal IBP is worse than this bound, we show in the next
section that in practice Proximal IBP beats the standard IBP algorithm. As an
alternative to the IBP algorithm we mention primal-dual accelerated gradient
descent [20,55].

5.1 Numerical Illustration

In this section, we present preliminary computational results for the numerical
performance analysis of the Proximal Iterative Bregman Projection (ProxIBP)
method discussed above asthe iterates (9).

Initially, we show the results for the computation of a non-regularized Wasser-
stein barycenter of a set of 10 truncated Gaussian distributions with finite sup-
port. For the finite support x = [−5,−4.9,−4.8, . . . ,−0.1, 0, 0.1, . . . , 4.8, 4.9, 5],
we set the finite distribution pl such that pl(i) = N (xi;μi, σi), that is, the
value at coordinate i of the distribution pl, for 1 ≤ l ≤ m, is the value of
the Normal distribution with mean μi and standard deviation σi. The values
{μi} ∼ Uniform[−5, 5], are uniformly chosen in the line segment [−5, 5], and the
values are selected as {μi} ∼ Uniform[0.25, 1.25]. For simplicity of exposition,
we select uniform weighting for all distributions, i.e., wl = 1/m.

Figure 4 shows the numerical results for a number of comparative scenar-
ios between the Iterative Bregman Projection (IBP) algorithm proposed in [5]
and its Proximal variant in (9). For both algorithms, we show the function val-
ues achieved by the generated iterates, and the final approximated barycenter.
The results for the IBP algorithm are shown in Fig. 4(a) and (b). Figure 4(a)
shows the weighted distance between the generated barycenter and the original
distributions for three different desired accuracy values.

It is clear that a bigger ε generates a faster convergence, but the final cost
is slightly higher than in other cases. Figure 4(b) shows the resulting barycenter
for the three values of the accuracy parameter. For higher accuracy, the effects of
the regularization constant are smaller and thus we obtain a “spikier” barycen-
ter. Figure 4(c) and (d) shows a similar analysis for the proposed Proximal IBP
in (9), in Fig. 4(c) we observe the function value of the generated barycenter, for
a fixed number of inner loop iterations, and changing values of L, note that here
L is not a regularization parameter but the weight on the Bregman function.
For larger values of L, the inner loop problem is easier to solve, requires less
iterations to achieve certain accuracy, with the price in a larger number of itera-
tions in the outer loop. For the particular problem studied, 200 iterations in the
outer loop are sufficient to achieve good performance even with relatively smaller
values of L. Figure 4(c) shows the generated barycenters for the Proximal IBP
algorithm. Finally, Fig. 4(e) and (f) show the results, for the analogous adaptive
stopping condition described in Line 11 of Algorithm 3 with ε = 1 · 10−10. We
test two different values of the parameter L, namely 1 and 0.1. Additionally,
we explore the suggested adaptive search procedure, where one decreases the
value of the parameter L at each iteration, until the inner problem has become
particularly hard to solve. This last approach is shown a fast convergence as
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Fig. 4. Numerical results for the computation of the barycenter of 10 truncated Gaus-
sian random variables with finite support for the IBP Algorithm and the Proximal IBP
algorithm. Both function value and final resulting barycenter are shown for an number
of simulation scenarios.
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it reaches a comparable value in around 10 iterations. Figure 4(f) shows the
resulting barycenters.

Again, we refer to the full version [51] for additional experiments e.g. on
computing Wasserstein barycenters of images from MNIST dataset8.

6 Conclusions

In this paper we consider gradient methods with inexact information of the
objective given by inexact model of this objective. We analyze a gradient-type
method for this type of problems and provide its convergence rate. To illustrate
the applications, we consider optimization problems in optimal transport and a
clustering model. Notably, our framework allows to solve non-convex problems
which have a convex inexact model, which is illustrated in the section devoted
to clustering model.
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2018001, Université catholique de Louvain, Center for Operations Research
and Econometrics (CORE), January 2018. https://ideas.repec.org/p/cor/louvco/
2018001.html

42. Nesterov, Y., Polyak, B.: Cubic regularization of Newton method and its global
performance. Math. Program. 108(1), 177–205 (2006)

43. Ochs, P., Fadili, J., Brox, T.: Non-smooth non-convex bregman minimization: uni-
fication and new algorithms. J. Optim. Theory Appl. 181(1), 244–278 (2019)

http://arxiv.org/abs/1802.04367
https://arxiv.org/abs/1806.05140
https://arxiv.org/abs/1707.08486
https://arxiv.org/abs/1707.08486
https://arxiv.org/abs/1703.03658
https://arxiv.org/abs/1711.00394
https://arxiv.org/abs/1506.00292
https://arxiv.org/abs/1506.00292
https://arxiv.org/abs/1901.08686
https://arxiv.org/abs/1901.08686
https://arxiv.org/abs/1901.00226
https://ideas.repec.org/p/cor/louvco/2018005.html
https://ideas.repec.org/p/cor/louvco/2018005.html
https://ideas.repec.org/p/cor/louvco/2018001.html
https://ideas.repec.org/p/cor/louvco/2018001.html


114 F. S. Stonyakin et al.

44. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE
12th International Conference on Computer Vision, pp. 460–467 (2009)
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